Jian Wang, MD, PhD, Canada

• Division Manager, Clinical Review Division – Haematology/Oncology, Centre for Evaluation of Radiopharmaceuticals and Biotherapeutics, Biologics and Genetic Therapies Directorate, Health Canada
Canada’s approach to non-clinical and clinical assessment of biosimilars

Jian Wang, MD, PhD
23 June 2019
Canada’s Approach to Non-Clinical and Clinical Assessment of Biosimilars

Jian Wang, MD, PhD
Division Manager, Clinical Evaluation Division - Biologics and Genetic Therapies Directorate
Health Canada

2nd ASEAN Educational Workshop on Regulatory Considerations of Biosimilars
23 June 2019
Penang, Malaysia
Regulations for Biologics in Canada

- **Food and Drugs Act**
 - Schedule D – Biologic Drugs List
 - Section 12 - Requirement that the premises in which the drug is manufactured and the process and conditions of manufacture therein are suitable to ensure that the drug will not be unsafe for use.

- **Food and Drug Regulations**, Part C: Drugs
 - Division 1 - General Requirements
 - Division 1A - Establishment Licensing
 - Division 2 - Good Manufacturing Practices
 - Annex to the GMP Guidelines, GMPs for Biologics
 - Division 4 - Schedule D (Biologic) Drugs
 - Division 5 - Clinical Trial Applications
 - Division 8 - New Drugs

- Importantly, there are no regulations that establish an abbreviated authorization pathway for Biosimilars
- Canadian requirements are based on policy that allows for a reduced clinical package under certain circumstances
Regulatory Pathways for Biosimilars in Canada

Copies of

- Chemical Drugs
- Synthetic peptides
- rRNA peptides
- LMWH
- Biologics

Regulatory Pathways

- ANDS
- NDS

Classification of Drugs

- Generic
- Biosimilar

(Same) Peptide

US FDA
Pharmaceuticals vs. Biologics

Small Molecule
- Acetyl-salicylic acid
 - ~180 daltons
 - 21 atoms
- Insulin
 - 51 amino acids
 - ~5,800 daltons
 - 788 atoms

Biologics
- Erythropoietin
 - 165 amino acids
 - ~34,000 daltons
 - 2611 atoms
- IgG1 antibody
 - ~1300 amino acids
 - ~150,000 daltons
 - >20,000 atoms
<table>
<thead>
<tr>
<th></th>
<th>Biosimilars</th>
<th>Generics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory Pathway</td>
<td>New Drug or biosimilar pathway</td>
<td>Generic</td>
</tr>
<tr>
<td>Drug Substance</td>
<td>Identical amino-acid sequence to reference</td>
<td>Identical to reference (Pharmaceutical equivalence)</td>
</tr>
<tr>
<td>Comparative Dissolution Profiles</td>
<td>Not required (injectable)</td>
<td>Required at 3 pH levels</td>
</tr>
<tr>
<td>Structure characterization</td>
<td>Comparable to reference</td>
<td></td>
</tr>
<tr>
<td>Function characterization</td>
<td>Comparable to reference</td>
<td></td>
</tr>
<tr>
<td>Non-Clinical Study</td>
<td>Reduced and comparable to reference</td>
<td></td>
</tr>
<tr>
<td>PK Profile</td>
<td>Comparable PK profile to reference</td>
<td>PK equivalence to reference</td>
</tr>
<tr>
<td>PD Profile</td>
<td>Comparable PD profile to reference</td>
<td></td>
</tr>
<tr>
<td>Efficacy</td>
<td>No clinically meaningful differences in at least one indication</td>
<td></td>
</tr>
<tr>
<td>Safety/Immunogenicity</td>
<td>No clinically meaningful differences in at least one indication</td>
<td></td>
</tr>
<tr>
<td>Indication</td>
<td>May receive all indications of Reference or additional study (switchable)</td>
<td>Receive all indications of Reference (interchangeable)</td>
</tr>
</tbody>
</table>
The foundation of a biosimilar development program is based on the extensive side-by-side structural and functional characterization of the biosimilar and the reference biological drug (RBD) to demonstrate similarity.

- **Step-by-step sequential development program**, evaluating residual uncertainty at each step.

- **Case-by-case based approach** tailored to individual product.
<table>
<thead>
<tr>
<th>Quality Attribute</th>
<th>PK</th>
<th>Efficacy</th>
<th>Safety/Immunogenicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structure</td>
<td></td>
<td>Variable effect (product dependent)</td>
<td>Misfolding or truncation can lead to lower efficacy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Misfolding can lead to ADA formation</td>
<td>Higher aggregates can lead to ADA formation</td>
</tr>
<tr>
<td>Aggregates</td>
<td></td>
<td>Lower absorption and bioavailability</td>
<td>Variable impact on Fcγ binding</td>
</tr>
<tr>
<td>Charge heterogeneity</td>
<td>Variable effect (product dependent)</td>
<td>Can impact potency (depending on source)</td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td>Protein concentration</td>
<td>Can impact dose/potency</td>
<td>Can impact safety</td>
</tr>
<tr>
<td>Glycosylation profile</td>
<td>High mannosae</td>
<td>Longer half-life with higher mannose</td>
<td>Higher FcγRIII and ADCC with higher mannose</td>
</tr>
<tr>
<td></td>
<td>Fucosylation</td>
<td>Higher FcγRIII and ADCC with lower fucose</td>
<td>Can elicit immunogenic response</td>
</tr>
<tr>
<td>Biological activity</td>
<td>Binding to Fcγ receptors</td>
<td>Variable impact on ADCC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FcRn affinity</td>
<td>Higher FcRn affinity with longer half-life</td>
<td>Variable impact on CDC</td>
</tr>
<tr>
<td>Process impurities</td>
<td>Host cell DNA</td>
<td></td>
<td>Can elicit immunogenic response</td>
</tr>
</tbody>
</table>
Non-clinical Comparison
Comparative non-clinical studies following principles recommended by ICH S6 (R1) to detect significant differences between the biosimilar and the reference

In vitro studies
- Extensive receptor binding studies and cell-based assays (considered to be more sensitive)

In vivo studies
- Animal PK/PD studies when feasible
- At least one repeat-dose toxicity study, including characterization of toxicokinetic parameters, conducted in a relevant species
- Other relevant safety observations (e.g., local tolerance), which can be made during the same toxicity study

Future: Regulatory expectations for comparative toxicology studies have changed over time. Flexible approaches have been considered,

- Non-comparative animal studies
- *in vitro* studies only, if justifiable
PK/PD Comparison
Comparative PK Studies

➢ Comparative clinical PK data are required.

➢ The comparative PK studies should be conducted in a setting that is reflective of the clinical situation and/or is sensitive to detect differences between the biosimilar and the reference.

➢ The most sensitive PK study design to detect potential differences is the single dose cross-over design (short half-life).

➢ The cross-over, single dose design can be limited by the properties of the biologics. Alternatively, parallel and/or multiple-dose design could be considered.

www.esourceresearch.org/tabid/198/Default.aspx
In general, the PK study can be conducted in healthy volunteers. However, healthy volunteers may not always reflect the PK parameters of patients…
- receptor expression,
- receptor sub-types,
- pathophysiological process of disease
- patient status
- Safety concerns

Therefore, comparative PK studies may also be conducted in patient population.
Principles of study design, statistical methods and criteria of acceptance for small molecules are used as a general guidance for biologics.

In a single dose study:
- AUCt (90% CI, 80-125%)
- AUCi (not required in Canada)
- Cmax (90% ratio, 80-125%)

When the IV route of administration is involved, additional parameters (Tmax, T1/2, CL, Vd or Vss) might also be investigated.
Comparative PK Studies: 3-Way Head to Head

- Submission usually contains 3-way comparisons
- Health Canada usually considers the comparison between the biosimilar and the reference that is deemed to be the Canadian reference
- 3-Way comparison is considered if both references are used in clinical studies
Comparative PD data are desirable (if available) and can help to reduce residual uncertainty

<table>
<thead>
<tr>
<th>Clinical sensitivity</th>
<th>Assay sensitivity</th>
<th>Dosing sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD values should be sensitive to PK changes</td>
<td>Dose in the steep part of the dose-response curve should be considered</td>
<td>A therapeutic dose for patients may induce a ceiling effect in healthy volunteers, thus masking potential differences</td>
</tr>
<tr>
<td>The PD surrogate should be relevant to the mechanism of action</td>
<td></td>
<td>- A lower dose may be required</td>
</tr>
<tr>
<td>PD endpoints used should be clinically relevant e.g., absolute neutrophil count for a biosimilar G-CSF and be clinically validated</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparative PD Study: PD Surrogates

<table>
<thead>
<tr>
<th>Biologics</th>
<th>PD Surrogate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filgrastim (G-CSF)</td>
<td>Absolute neutrophil count (ANC)</td>
</tr>
<tr>
<td>Insulin</td>
<td>Euglycaemic clamp test (glucose)</td>
</tr>
<tr>
<td>alpha interferons</td>
<td>Early viral load reduction</td>
</tr>
<tr>
<td>Epoetin</td>
<td>Hemoglobin levels</td>
</tr>
<tr>
<td>Teriparatide</td>
<td>Bone mineral density (BMD)*</td>
</tr>
<tr>
<td>Follicle stimulating hormone (r-hFSH)</td>
<td>Number of oocytes retrieved*</td>
</tr>
</tbody>
</table>

- PD parameters should be investigated as part of the “phase III trial”
- For most mAbs, there are no sensitive PD markers to confirm comparability between the biosimilar and the reference, and to be used to reduce the clinical studies
PK Endpoint

➢ The FDA considers that the 90% CI of the relative mean Cmax, AUCt and AUCi of the test to the reference should be within 80% to 125%

➢ Health Canada considers that the 90% CI of the relative mean AUCt and the 90% ratio Cmax of the test to the reference should be within 80% to 125%.

➢ The EMA considers that the 90% CI of the relative mean Cmax and AUCi of the test to the reference should be within 80% to 125%

PD Endpoint

➢ The FDA considers that the 90% confidence interval, for mean ratio (test to reference) should be within the predefined acceptance limits of 80–125%

➢ The EMA and Health Canada considers that the 95% confidence interval, for mean ratio (test to reference) should be within the predefined acceptance limits of 80–125%
Clinical Comparison
The innovator has established efficacy and safety for each indication.

The purpose of the clinical program for biosimilars is to show that residual uncertainty from quality assessment does not cause clinically meaningful differences in efficacy, safety and/or immunogenicity in the sensitive population.
Sensitivity Clinical Study Population

The comparative clinical study should be conducted in a sufficiently sensitive population that is representative of the authorized indications to detect differences between the biosimilar and the reference.

- A homogeneous population would give a better chance to detect potential differences.
- Observed clinical effects are the direct action of the biosimilar or the reference without interference of other drugs (when feasible).
- A large body of historical data is available for validation of study outcomes (external validity).
- Mechanism of action is well-understood and represented in the population.
- Effect size is known to be large.
In an equivalence trial, if the treatment effect falls between the predefined equivalence margin 6.1 and 7.9, the study would establish “equivalence” between the biosimilar and the reference.

If the treatment effect falls outside the 6.1 to 7.9 range, the study would fail to establish “equivalence” between the biosimilar and the reference.
A sensitive study endpoint should be considered to improve the detection of potential differences between the biosimilar and the reference within the sensitive population.

➢ A study endpoint different from the innovator's original study endpoint(s) may be used, e.g., ORR as primary endpoint instead of OS in oncology trials for biosimilars.

➢ A new surrogate (e.g. pCR) or a more sensitive clinical endpoint identified in clinical practice may be acceptable, e.g., assess clinical response before the plateau phase for better sensitivity (time-dependent sensitivity).
Sensitivity of Clinical Assessment Time Points

Figure 2. Study DE019 ACR 20 Responses Over 52 Weeks
The final authorized indications are not ‘extrapolated’ from one ‘single’ comparative clinical study. It is based on the totality of evidence.

Biosimilars can receive all indications of the reference based on the totality of evidence obtained from all comparative studies.
A biosimilar sponsor is eligible to apply for the indication(s) and condition(s) of use that are held by the reference drug authorized in Canada.

The biosimilar manufacturer may choose not to seek all indications held by the reference (most likely due to patent issue associated with the individual indication), and

Health Canada may decide not to authorize a biosimilar for a certain indication based on scientific and benefit/risk-based considerations.

After initial marketing authorization of the biosimilar, supplemental biosimilar submissions can be filed for new indications that are already held by the Canadian reference drug.

Indication that is not held by the Canadian reference drug could be granted to the biosimilar sponsor with a full clinical development programme.
What is a biosimilar?

• A biosimilar is a legitimate copy of a biopharmaceutical, which no longer is protected by patent, that has:
 – Undergone rigorous analytical and clinical assessment, in comparison to its reference product, and
 – Been approved by a regulatory agency according to a specific pathway for biosimilar evaluation
Generics and Biosimilars

Generic

1st generation biosimilar

2nd generation biosimilar

Aspirin (chemical)
180 daltons

Insulin
5,700 daltons

mAb
~150,000 daltons
The aim of a biosimilar development program is to establish “biosimilarity” based upon totality of evidence.

Manufacturing changes have been a part of biologics all along.
HC Authorized Biosimilars

2009
• Omnitrope (somatropin)
 — additional indications in 2015

2014
• Inflectra (infliximab)
 — Additional indications in 2016
• Remsima (infliximab)
 — Additional indications in 2016

2015
• Basaglar (insulin glargine)
• Grastofil (filgrastim)

2016
• Brenzys (etanercept)

2017
• Erelzi (etanercept)
• Admelog (insulin lispro)
• Renflexis (infliximab)

2018
• Lapelga (pegfilgrastim)
• Mvasi (bevacizumab)
• Fulphila (pegfilgrastim)

2019
• Truxima (rituximab)
• Ogivri (Trastuzumab)
• Brand name (bevacizumab)
• Even the review decision is positive.

• If a declaration that the making, constructing, using or selling of the biosimilar would infringe any reference drug’s patent that is the subject of an allegation, the submission will be placed on "Intellectual Property (IP) Hold“ in Canada.
Conclusions

When Health Canada grants market authorization of a biosimilar, it means that,

- The biosimilar has met all quality, safety, and clinical standards
- The biosimilar is structurally and functionally (highly) similar to the reference product
- Residual uncertainty from quality assessment does not cause clinically meaningful differences in efficacy, safety and/or immunogenicity
- The biosimilar can be safely used for all authorized therapeutic indications.
Potential Benefits of Using Biosimilars

Biosimilars offer stakeholders, including physicians, patients and payers - more choices when it comes to treatment options.
Thank you

Jian.wang@canada.ca
1-613-293-1849